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We analyze the F-locality condition” (proposed by Kay to be a mathematical implementation of a philo-
sophical bias related to the equivalence principle, which we call it {&el-equivalence principle), which is
often used to build a generalization of quantum field theory to nonglobally hyperbolic spacetimes. In particular
we argue that the theorem proved by Kay, Radzikowski, and Wald to the effect that time machines with
compactly generated Cauchy horizons are incompatible witfrtloeality condition actually does not support
the “chronology protection conjecture,” but rather testifies that Fhecality condition must be modified or
abandoned. We also show that this condition imposes a severe restriction on the geometry of th# isorld
just this restriction that comes into conflict with the existence of a time maghirtgch does not follow from
the above mentioned philosophical bias. So, one need not sacrifiGHteguivalence principle to “amend”
the F-locality condition. As an example we consider a particular modification, t&-locality condition.”
The theory obtained by replacing thelocality condition with the MF-locality condition possesses a few
attractive features. One of them is that it is consistent with both locality and the existence of time machines.
[S0556-282(98)00124-9
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I. INTRODUCTION amendments [revealed by the Kay-Radzikowski-Wald

In recent years much progress has been achieved towangW) theorenj stems from the fact that one canriast

the development of a rigorous and meaningful quantum fiel prbid time machines. . .

theory in curved backgroungemiclassical gravity In par- It has been about six years now that a mechanism that
ticular, in the framework of the “algebraic approaciigee ~CcoUld “protect causality”[3] against time machines has
[1] and references theréor globally hyperbolic spacetimes a been actively spught. The drlvmg force for th'|s search is
complete and self-consistent description was constructed gPparently the idea that the existence of a time machine

the real scalar field obeying the Klein-Gordon equation Would_ defy th_e usual notion of free_ will. This would be the
case indeed if we found a paraddike that usually called

(O0-m?)¢=0. (1) the grandfather paradpxSuppose we found such a system
and its initial (that is fixed to the past of the time machine
However, there are nonglobally hyperbolic spacetifieeg.,  creation state that the equations governing its evolution
the Kerr black hole or spacetimes with a conical singularityhave no solution due to the nontrivial causal structure of the
(those are universes containing a cosmic sjfirguantum  spacetime. We know that the system being prepared in this
effects in which are of obvious interest. So it would be de-state must evolve according just to those equatitios
sirable to have a theory applicable to such spacetimes ahange them we must have confessed that we overlooked
well. Unfortunately, global hyperbolicity plays a crucial role some effects, which would have implied that we simply built
in the above mentioned theory, which therefore cannot ben improper model, but not found a parajlard at the same
straightforwardly extended to the general case. The desireime we know that they have no solution. So we have to
generalization has not been constructed so far, but a fewonclude that such an initial state somehow cannot be real-
“reasonable candidates for minimal necessary conditions’ized, that is, *“...if there are closed timelike lines to the future
[1] were considered, that is, “statemerjthaf] begin with  of a given spacelike hypersurface, the set of possible initial
the phrase ‘Whatever else a quantum field théorya given  data for classical matter on that hypersurfadés]. heavily
non-globally hyperbolic spacetimeonsists of, it should at constrained comparedo] the same local interactiorjshat|
least involve...” " [1]. The best-studied candidate for a nec-were embedded in a chronology-respecting spacetifdg.”
essary condition is the F-locality condition” proposed by The dislike for such a contradiction with “a simple notion of
Kay [2]. Its importance is in that it turns out to be quite free will” [5] was so strong that Rama and Jé4, Visser
restrictive. In particular, a theorem was recently proved by[7], and in fact Hawking and Elli§5] proposedo postulate
Kay, Radzikowski, and Wald, which says, roughly speakingthe impossibility of time machines. Also a postulate prohib-
that theF-locality condition cannot hold in a spacetime con- iting time machines is implicitly containeghs is shown by
taining a time machine with the compactly generated Cauchyhe KRW theoremin Kay’s F-locality condition(from now
horizon[1]. on by a “time machine” we mean exclusively a time ma-
The present paper is devoted to the problem of how thehine with the compactly generated Cauchy horjzdfhe
F-locality condition can be amended. The necessity of thérony of the situation is that while no paradoxes have been
found so farf8], such postulates in the absence of a mecha-
nism that could enforce them lead to precisely the same con-
*Electronic address: redish@pulkovo.spb.su straints on one’s will. Indeed, we know that there are initial
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conditions on the metric and the fields such that when theyample we consider in Sec. V theMF-locality condition.”
are fixed at a spacelike surfdc¢he Einstein equations An important point is that while expressing théH-
coupled with the equations of motion for these fields lead te2quivalence principle(and seemingly doing it more ad-
the formation of a time machine. So if a postulate forbidsequately than theé=-locality condition), it does not forbid
time machines we 0n|y can conclude either tﬁhthere are time machinesFrom th|S We Concluqe in particular that, con-
some(e.g., quantumeffects which we have overlooked and trary to what was claimed ifi] and in a number of succeed-
which being taken into consideration always change thd"d Papers, the KRW theorem_do,es not “provide strong evi-
equations of motion so that the time machine does not fornf€Nce in support of Hawking’s chronology protection
or (ii) such initial conditions are somehow forbidden. Both conjecture.
pos_sibilities were considered in the literature. o Il GEOMETRICAL PRELIMINARIES

(i) A popular idea was that the vacuum polarization near a
would-be Cauchy horizofwhen it is compactly generatgd An important role in our discussion will be played by the
becomes so strong that its back reaction on the metric praiotion of global hyperbolicity Globally hyperbolic (GH)
vents the formation of the horizon. This idea, however, haspacetimes most adequately meet the concept of a “good
never been embodied in specific results. The vacuum pola@r “usual” spacetime(the Minkowski spacetime, for ex-
ization in spacetimes with a time machine was evaluated forRMPple, iSGH). _ .
a few simplest casel8,9,102 and it turned out that some-  Definition 1.A subsetN of a spacetimgM,g) is called
times it diverges on the Cauchy horizon and sometimes iglobally hyperbolic if strong causality holds kand for any
does not(in the perfect analogy with, say, the Minkowski PCIntsp,qeN the set)”(p)NJ~(q) is compact and lies in
spacé. So it is unlikely that this effect could always protect "™

cau_sality. ) o . i Whether or not a neighborhoddC M is GH is not deter-
(i) It is possible that initial data leading to the formation mined exclusively by its geometry. Due to the requirement

of a time machine are forbidden not by a restriction on oufpt [J*(p)NJI~(q)]CN it may happen thaN is not GH

will but si|_”n_ply by the fact that they require some unrealiz- g\en though I4,g|y) is GH when it is regarded as a space-

able conditions. It was showi3], for example, that to create time in its own right. So to describe the geometrical proper-

a time machine of a noncosmological nat(tfeat is evolving  tjes of a neighborhood proper we introduce the following.

from a noncompact Cauchy surfacene has to violate the Definition 2. We call a subseN of a spacetimeM,g)

weak energy conditiqr(\WEC) and a number of restrictions intrinsically globally hyperbolic if N,g|y) is a GH space-
was found on such violatiorsee, e.g.[11]). None of them,  {ime

however, has been able to rule time machines out. Moreover, Ciear|y whether a neighborhoddlis an intrinsicallyGH

recently a classical scenario for WEC violations was PromeighborhoodIGHN) does not depend on the geometry of
posed12]. _ M —N (in contrast to whether it is &HN). To avoid confu-

_ Thus causality remains unprotected and any postulate prjon, note that our notion of “global hyperbolicity” is that of
hibiting time machines without adducing a mechanism thatg) and differs from that in[1,2]. The latter corresponds to
enforces this prohibition raises the alternative of rejectingyr “intrinsic global hyperbolicity.” For later use let us list
either the' postulate or the idea that whether one can perfor'@ few obvious properties dfintrinsically) globally hyper-
an experiment do_es not depend on whether causality stil}g)ic neighborhood§(l \GHNS]: (GH,). An intersection of
holds somewhere in the future. _ two (1)GHNsis an (1 )GHN; GH,, any GHN is an (I \GHN

In the case of thé=-locality condition the alternatives at 5.4 an(l \GHN is aGHN if and only if it is causally convex
first glance seem equally unattractive since this condition i?that is if and only if no causal curve leaving tte)GHN
based on th&sH-equivalence principlésee Sec. Il HOW-  otyms in ij. Thus intrinsic global hyperbolicity is a weaker
ever, a closer inspection shows that focality condition  ¢,ngition than global hyperbolicity. In particular, we have
contaln_s a strong arbltrar_y r_equweme{m Sec. IV we dis- the following. GHs, for any pointP e M and any its neigh-
CUSs this fundamer)tal point m_grgat de)tho one can reéc-  p5rnp0dV there exists ar{l \JGHN N such thatP e NCV,
oncile the GH-equivalence principle with quantum field \nije sych aGHN exists if and only if strong causality holds
theory in spacetimes with a time machine by just abandomngn P. PropertyGH, enables us to construct a simple and

this requirement. In doing so one still can use the GHy,qef| example of a connectéd)GH but not aGH subset of

equivalence principle in the theory. It is only necessary tothe(three-dimensionaiIMinkowski spacé

find its another mathematical implementation. As an ex- Example: A “bad” set. Let V bé the cube {x,
e (—4,4)}. Consider the strigCV (see Fig. 1given by the
system

" It rather rules out thE-locality condition.

IActually, even on a part of the surfade=0 of an “almost
Minkowskian” space(cf. [3]).

There are also papers whefer nonsimply connected time ma-
chineg different results based on the “method of images” are ob-
tained and discussed. This method, however, involves manipula-3Connected IGH neighborhoods were calletally causalin
tions with incurably ill-defined entities and generally allows one to[13].
obtain almost any result one war(see[10] for a detailed discus- “The existence of such a neighborhood was mention¢#]iwith
sion). reference to Penrose.

XO:¢/2! (,DE[—7T,7T], pE[l,Z], (2)
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FIG. 1. Construction of a “bad” set.

where p,¢ are the polar coordinates on the plang,k,).

There are causally connected points ®and, in particular,
there are points connected by null geodesics lying ifor

null related in V, in terms of[1,2]). A simple calculation
based on the fact that

)

A is spacelike whenevelA,/Ai|<1
shows, however, that

V1,U2€S, U1FUy, U1V = @(v3)—¢(v1)> o> .
So a causal curve can connect two pointSionly if one of
them lies above the plan®@={v|xo(v)=0} and the other
below ®. Hence(a) all causal curves connecting points ®f
intersect the plan@. Similarly, by simple though tiresome
considerations one can show th&) there is a closed set
O®C® such thatSN® = and none of the causal curves
from S to S intersectsW=®— 0. [For example, we can
choose¥={v e ®|p(v) € (0.08,2.2), |¢(v)|<0.1}.] Con-
sider nowS as a subset of the spacetiffe =M — 0. Prop-
erties(a) and(b) ensure thaSis a(closed achronal set and
hence by Proposition 6.6.3 (] the interiorB of its Cauchy
domain inM’ is aGH subset ofM’. Thus by GH, B is an
(I'YGHN and not aGHN.

Note that we have used the fact ti\tis the Minkowski
space only in stating Ed3). It can be easily seen, however,
that within any neighborhood irany spacetime coordinates
X; can be found such that3) holds in the cube{x
e(—4,4)}. So (being generalized to the four-dimensional
case this example proves the following proposition.

Proposition 1.For any pointp and any its neighborhood
V such a connectefd \GHN BCV of p and such a pair of
null related inV pointsr,qe B exist thatr and g are not
connected by any causal curve lyingBn

lll. F LOCALITY

The algebraic approach to quantum field thedoglow
we cite only some basic points that have to do vHtlocal-
ity; for details sed 1] and references thergiis based on the
notion of the “field algebra,” which is a algebra with
identity 1 generated by polynomials in “smeared fields”
¢(f ), wheref ranges over the spad® M) of smooth real-
valued functions compactly supported dh The smeared
fields ¢(f ) are just some abstract objedtaformally they
can be understood as(f )= fyd(x)f(x)V—gd*x, where
¢(x) is the “field at a point” operator of thénonrigorou$
conventional quantum field thedryA field algebra is de-
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fined by the relation§for all f,he D(M) and for all pairs of
real numbers,b]

d(f)=¢()*, p(af+bhy=ag(f)+beg(h),

$(O-m*)f]=0 4
(defining a “prefield algebra)’ and a relation fixing commu-
tators[ ¢(f ), ¢(h)], which we discuss in the following sub-
sections.

Given a field algebra one can proceed to build a complete
quantum theory of the free scalar field by introducing the
notion of states postulating some properties for “physically
realistic” states and prescriptions for evaluating physical
quantities(such as the renormalized expectation value of the
stress-energy tensdior these states. We will not go into this
“second level” [2] of the theory.

A. The globally hyperbolic case

Definition 3.Let £ be a subset dD(M) X D(M) and letA
be a functional on pair§h, wheref,he D(M) and (f,h)
e & We shall callA a bidistribution oné if it is separately
linear and continuouwith respect to topology ab(M)] in
either variable.

To fix a commutator relation for the field algebra consider
the Klein-Gordon equatiofi) given on anl \JGHN U. Let A
be its bidistributional solution, that is, a bidistribution on
D(U) X D(U) satisfying  A[(O—-m?)f,h]=A[f, (O
—m?)h]=0 for all f,he D(U). Among all such solutions
there is a preferred one.

Definition 4.Let A{® be the fundamental solutions of
the inhomogeneous Klein-Gordon equation on a neighbor-
hoodU satisfying the property

AY®(f,g)=0 whenever suppnJ™(suppg,U)=4J.
5

Then we call a bidistributional solution of the@mogeneous
Klein-Gordon equatiom\ ;=A%— A the advanced minus
retarded solution olJ.

It turns out that for anyl )JGHN U, A, exists and is unique.
So we complete the definition of a field algebra by adding to
Eq. (4) the commutator relation

[&(f),p(h) =i An(f,h)I. (6)

Which of the bidistributional solutions of Eql) is the ad-
vanced minus retarded solution for a given regibis com-
pletely determined by the causal structurédbfThis allows
one to prove the following important facfg].

The F-locality property (form I)Every pointp in a GH
spacetimeM has an intrinsically globally hyperbolic neigh-
borhoodU, such that for allf,he D(U}), relation(6) holds
with Ay, replaced byAUp.

We can also reformulate thelocality property in a slightly
different form by “gluing” all theseAUp into a single bid-

istribution AF.
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Let A be a bidistribution or£>D(U) X D(U). It induces The F-locality condition clearly does not figll commu-
a bidistributionA | on D(U) X D(U) by the rule tators. The value of¢(f), #(h)] remains undefined fdih,
whose supports do not belong to a commap. It is more

ViheD(U), Aly(f,h)=A(f,h). important, however, to find out whether this uncertainty ex-

tends to arbitrarily small regions. Indeed, to find such local
quantities agT,,)(p) or, say,{$2)(p), it would be enough
to know all commutatorg ¢(f),#(h)] with functions f,h

Aly=Ay. both supported in a small neighborhoddf p. This leads us

to the following question: Is it true for at leasbmeopen
The F-locality property (form Il)There are such an open covering{V,} that

covering of aGH spacetimeM by (I \JGHNs{U .} and such a ,
bidistribgtljtion AF opn &y that fo?lPrl, AF r{natc};hes anyJ, Vif.hedy, A'F(f,h)=AF(fh) @
and forPr,, when (,h) e &, relation (6) holds with A,
replaced byAF.

Definition 5. We shall callU and A matchingif U is a
connected| )GHN and

whenever bothA™ and A'F satisfy CON; (with possibly
different{U,})? It turns out that the answer is negative even

Here and subsequently §fJ,} is a set of neighborhoods in in the simplest case. IndeedNfis the Minkowski space and
M we write &, for U [D(U,)XD(U,)]. AF is a solution of Eq(1) satisfying CON, then so isA'F:
B. The nonglobally hyperbolic case A'F(T)=AR(T,9) where f(x*)=f(x)+f(x"+a")
To build a field algebra in a nonglobally hyperbolic and bya* we denote an arbitrary constant spacelike vector
spacetime we can start with a prefield algelda Then, field. Clearly, for any{V,} we can find ara* such that Eq.
however, we meet a problem with the commutator relation7) breaks down. So th&-locality condition was proposed
since Ay, is (uniquely defined only forGH spacetimes and only as anecessargondition that is to be supplemented with
there are no obviously preferred solutions of Ef) any conditions of the second level to obtain a complete theory.
longer. So we need some new postulate and Kay proposed
[2] to infer such a postulate from the equivalence principle,
which as applied to our situation he formulated as follows.
The GH-equivalence principl®n an arbitrary spacetime, The F-locality condition(or CON; to be more specifjc
the laws in the small should coincide with the “usual laws includes actually a postulate forbidding time machines. This
for quantum field theory on globally hyperbolic space-follows from the Kay-Radzikowski-Wald theorem.
times.” The KRW theoremif a spacetime has a time machine
) o ) . with the compactly generated Cauchy horizon, then there is
From this principle hepostulatedin a sufficiently small 5 extension tov of the usual field algebra on the initial
neighborhood of a point in an arbitrary spacetime what hom%lobally hyperbolic regiorD which satisfies theée-locality
by itself in a GH spacetime. Namely, he requires the follow-¢qndition.
ing.
The F-locality condition (form I).Every pointp in M Here by “the usual field algebra” we mean an algebra where
should have an intrinsically globally hyperbolic neighbor-for f,he D(D) relation (6) holds with A, replaced byAp
hood U, such that, for allf,he D(U,), relation (6) holds  (for the proof of the theorem and the precise definitiorDof
with Ay, replaced byA . see[1]).
P As is discussed in the Introduction, postulating causality
It is meant that a spacetime for which there is no field algewithout adducing a “protecting” mechanism, one comes up
bra satisfying this conditiorfa “non-F-quantum compat- against a contradiction with the usual notion of free will,
ible” spacetimg cannot arise as an approximate descriptionwhich can be regarded as a paradox. Such a situétiben
of a state of quantum gravity and must thus be considered &s paradox arises from postulating in the general case a con-

IV. THE PARADOX AND ITS RESOLUTION

unphysical. dition harmless in th&H case¢ is in no way strange or new.
To reveal the logical structure of thelocality condition Example: Classical pointlike particle€onsider a system

we reformulate it analogously to tHelocality property. of elastic classical balls. As long as one studies dBly
The F-locality condition (form Il)There should be such spacetimes one sees that the following property holds.

an open covering of a space-tifveby (I \JGHNs{U .} and a The property of balls conservatiodny Cauchy surface

bidistribution A" on & that forCON,, AF matches any , intersects the same number of the world lines of the balls.

and forCON,, when (f,h) € £, relation(6) holds withA . ) . i )

replaced byAF. Going to arbltrary_spacetlmes, one flnds_ that the evolu_tlon _of
An important difference between these two parts of the? system of balls is no longer uniquely fixed by what fixes it

F-locality condition is thatC ON, just specifies what algebra

we take to be the field algebra, whi®ON; is a nontrivial

requirement placed from the outset upon the spacetime. It is5A model describing such a system can be founfBinA specific

significant that the proof of the KRW theorem rests uponmathematical meaning is assigned there to the words “a world line

CON;. of a ball,” etc. The property then can Ipgovedwithin this model.
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in the GH case. To overcome this probletm the perfect proof) since both of these points belong ¥and are null
analogy with theF-locality condition one could adopt the connected in it. This is a contradiction.
following postulaté [note that in the general case itis justa Thus we see that even if a spacetime is globally hyper-
postulate that is aextraneous (global) conditioand not a  bolic there are two families ofl \GHNs for any its point:
consequence of any other local principles accepted in theausally convexXand thusGH) sets{G,} (let us call them
model. good and those containing null related points that are intrin-
The condition of ball number conservatioAny partial  sically noncausally connecte@ve shall call thembad and
Cauchy surface should intersect the same number of théenote by{Bg}). Both families include “arbitrarily small”
world lines of the balls. sets (i.e., for any neighborhood/ one can find both a
“good” (Gao) and a “bad” (Bﬁo) subsets olV). Irrespec-

tive of what meaning one assigns to the term “the laws in

are spacetimes in which initial datee., data at some patrtial the small,” it seems reasonable to_ assume that they are the
Cauchy surfaceexist incompatible with the postulate of ball S2M€ forBs, and G,,. The more it is so as an observer
number conservation. This fact constitutes(apparent see ~ cannot determingby geometrical meansvhether a neigh-
[8]) paradox and so one could claim that the existence oborhood is good or bad without leaving it. We have seen that
such paradoxes suggests that time machines are prohibitéde good sets match the commutator function, while the bad
[6]. On the other hand, as we discussed above, it seems mop&€s do not. So it follows that the identity of physics in two
reasonable to look for contradictions which we ourselvess€ts does not imply that they both match the same bidistri-
could introduce in the model in the process of constructingbution. Correspondingly, the fact that the laws in a small
In doing so we would interpret the nonclassical compatibilityregion coincide with any other laws does not imply thdbit

of the Deutsch-Politzer spacetime as evidence not against iy its subsetmatches the commutator function on a bigger
realizability of this spacetime, but rather against the posturegion. Sahe requirement CONthat a point should have a
late. Indeed, abandoning this postulate we resolve the par&eighborhood matching a global commutator function is not
dox (and thus permit time machinewhile causing no harm an expression of the GH-equivalence princjdet is rather

to any known physic$8]. an extraneous condition. It is also an essentiglgbal con-

The above example suggests that to avoid the difficultielition. Indeed, for any point onalwayscan find a bidistri-
connected with forbidding the time machine, which we dis-bution matchingsome(l )GHN of the point and so the main
cussed in the Introduction, it would be natural just to abanidea of CON; is that such a bidistribution should exist glo-
don theF-locality condition. The problem, however, is that bally. We see thus that indeed theocality condition needs
while we can easily abandon the postulate of ball numbefmendments since while leading to possible paradoxes it
conservation, thé&-locality condition seems to be based on contains a strong nonjustified requirement.
the philosophical bias resembling the equivalence principle,
which is something one would not like to reject. So, in the
remainder of the section we show that thdocality condi-
tion contains actually aarbitrary (i.e., not implied by the V. MODIFIED F LOCALITY
GH-equivalence principle or any other respectable physical
principle) global requirementand therefore can be rejected
or modified without regret.

Proposition 2.For any/A and any neighborhood there
exists a connected )JGHN BCV that does not match.

Proof. Without loss of generalitfseeGHj) V may be
thought of as being aril )JGHN. So eitherV itself is the
desired neighborhood k|, is the advanced minus retarded
solution Ay, on V. In the latter case we can simply adapt the
proof of the KRW theorenjil] for our needs. Namely, l&
be the set from Proposition 1 amgy the points appearing
there. To obtain a contradiction suppose tBamnatchesA
and hence matched |,=Ay also. This would mean, by
definition, that

Then one would find6,8] that there are “nonclassical com-
patible” spacetimege.g., the Deutsch-Politzer spaciat

In this section we formulate and discuss a candidate nec-
essary condition alternative to thelocality condition. Be-

ing an implementation of theGH-equivalence principle
(coupled with the locality principle; see belpwit neverthe-

less does not forbid any causal structure whatsoever. Thus a
theory based on this condition is free from the paradoxes
discussed above, which provides further evidence in favor of
the idea that the existence of time machines is inconsistent
not with the equivalence principle, but only with its inad-
equate implementation.

Consider a commutatof ¢(x),¢(y)]. Physically this
commutator describes the process in which a particle created
from vacuum inx annihilates iny. So when we requirgas
we did in Eq.(6)] that the commutator function should van-
ish for noncausally connectedandy we just implement the
(most fundamentalidea that an event can affect only those
events that are connected with it by causal curves or, in other
words, that particlegor information in any other forpncan-
not propagate faster than light. The very same ig=dled
locality, causality, or local causality depending on the formu-
lation and application suggests that if the conditions are

®Such an approach was really developed in a number of workfixed in J*(x)NJ~(y) (that is, in all points where a nonta-
(e.g., sed4,6,14). chionic particle propagating fromto y can find itself, then

(Ay)|g=Ag, (8)

but Ag(r,q)=0 sincer andq are not causally connected in
B, while (Ay)|g is singular at the pair,q (see[1] for the
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[o(X),o(y)] is thereby also fixed. Thus, from locality it Proposition 3.For any spacetim@&l with nonemptyG,
seems natural to require as a necessary condition that theMF exists and is unique.
field algebra in a globally hyperbolic neighborhoGddoes Proof. Consider twoGHNs G and G¢. By GH; their
not “feel” whether or not there is something outsi@[re-  intersection is also &HN (we can thus denote ;) and
call that for anyx,yeG any point ze M—G lies off  points inG; are causally related if and only if they are caus-
J*(x)NJI~(y)]. We can then construct a field algebi@  ally related inG; (and thus also iG,). So (see[2])
least on a part oM; see below by adopting the following
modification of theF-locality condition.

The MF-locality conditionlf {G,} is the collection of all (Ag)le =06 =(Ag)|a,
globally hyperbolic subsets of a spacetifik then for all b ! !
(f,h) e & relation (6) should hold with Ay, replaced by

AMF defined to be a bidistribution afy; matching eaci@,, . _ . .
which means that we can defire™" by the equation

(In other words, we require that(f) and ¢(h) with f andh
supported on a commoGHN G, should commute as if
there were no ambient spabk— G, at all) This condition
obviously holds in &GH spacetime, whefeAMF=A,
Remark.In discussing the field algebra we operate with
such “nonlocal” (by their very naturgentities as commuta-

tors [¢(x),4(y)], wherex andy can be wide apart. NO this guarantees that MF is a desired bidistribution match-
wonder that relevant statements are also formulated in noqhg all G,,. At the same timeany functional matching them

local terms. In particular, both th&F locality and the . st satisfy Eq(9), which proves the uniqueness. -
F-locality conditions distinguish some classegI0iGHNsof (b) As we discussed above, tHelocality condition is

a point from the others. In the former case those are the, ub-iin nature. Either\F does not exist oM and we must
causally convex neighborhoods and in the latter case the di clude the wholéM from consideration orAF exists and

tinguished class is not specified, but its existence is postpen g region is distinguished in this sense. The situation
lated. However, to learn whether or not a givinGHN  iters greatly if we postulate thF-locality condition in-

belongs to the distinguished class we have to consider how Liead. On the one hanaipy spacetime is allowed nofgince
is embedded in the ambient space and to take into accountmr always exists(see 'Proposition)sthere are no “non-

properties of this spade.g., to check whether or not a 8¢t MF-compatible spaceg’and, on the other hand, different

is_causally convex one m“$t consider the v;/.hibTe{V)]'_ .In parts of a spacetime now have different status. Namely, each
this connection we emphasize that t&-locality condition point pe G has a neighborhootd , such thatAMF(f,h) is

is not a nonlocal postulat@nuch less a postulate contradict- determined by theVIF-locality condition at least forf,h
ing locality). That is, it does not require that a spacetime, or_ Dy_. So one can develop the theory as we mentioned in

a field algebra, possess any nonlocal properties. On the con- “p" i

trary, we found out what locality requires in a specific situ—[[Le beginning of Sec. il and eventually fifd,,,)(p). How-

ation (it is the description of this situation that necessitates€Vel: this cannot be done at this stage for a poinMin
nonlocal terms as we argued abpeed chose these require- — G+ Where no field algebra is fixed. Thus the surface
ments as a postulate of the thefry. separates the area of the present version of semiclassical

. . . 9
The MF-locality condition differs from thé=-locality con- ~ 9ravity fromterra incognita

AMFlg =Ag,. 9

dition in that(a) some IGHNsare replaced bgach GHNand The role of 9G is especially important in the time ma-
(b) a condition is imposed only on the field algebra, but notchine theory since it i¥G where the divergence of the stress
on the geometry of the background spacetime. energy is expected by many authors. So it should be stressed

that physically there is nothing particular in points @fG

Correspondingly, two important consequences take place. (including the “base points”; se¢l]). In perfect analogy
(& As we discussed in Sec. lll, tHe-locality condition  with coordinate singularities in general relativityG does

does not uniquely fix the commutator function. Neither doesot correspond to any physical entity and the fact that we
the MF-locality condition. The situation has improved, how- cannot find the energy density in a point @ means not
ever, in that now we can fix at least the ultraviolet behaviornthat it is singular or ill-defined here but simply that we do not
of the commutator function in the regidd=U ,G, where  know how to do this.
strong causality holds. Remark.The MF-locality condition was proposed in this

paper primarily to clarify the relation between causality vio-

lations and theGH-equivalence principle. However, the

"Generally, AMF is not the same aéF. This follows directly
from the nonuniqueness @t~ shown at the end of Sec. Ill.

®Note that the same situation takes place in the globally hyper- 9n this respecé/G is similar to Visser's “reliability boundary”
bolic case. The postulatés) also may seem nonlocal since the [7]. The main difference is that the latter conceptually bounds the
condition defining/AAy, contains[see Eq.(5)] a “nonlocal” part region where semiclassical gravity breaks down because of quan-
suppfNJ*(suppg,U)=0. tum gravity corrections.
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uniqueness proved above and the simplicity of the underlytimes. Then it would be interesting to find out whether the

ing physical assumption suggest that perhaps it deservestlaeory proposed by Yurtsevét3] (which does not, at least
more serious consideration as a possible basis for construaxplicitly, appeal to any locality principlds consistent with
ing semiclassical gravity in nonglobally hyperbolic space-it.
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