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Quantum field theory and time machines

S. Krasnikov*
The Central Astronomical Observatory at Pulkovo, St. Petersburg, 196140, Russia

~Received 15 May 1998; published 14 December 1998!

We analyze the ‘‘F-locality condition’’ ~proposed by Kay to be a mathematical implementation of a philo-
sophical bias related to the equivalence principle, which we call it the ‘‘GH-equivalence principle’’!, which is
often used to build a generalization of quantum field theory to nonglobally hyperbolic spacetimes. In particular
we argue that the theorem proved by Kay, Radzikowski, and Wald to the effect that time machines with
compactly generated Cauchy horizons are incompatible with theF-locality condition actually does not support
the ‘‘chronology protection conjecture,’’ but rather testifies that theF-locality condition must be modified or
abandoned. We also show that this condition imposes a severe restriction on the geometry of the world~it is
just this restriction that comes into conflict with the existence of a time machine!, which does not follow from
the above mentioned philosophical bias. So, one need not sacrifice theGH-equivalence principle to ‘‘amend’’
the F-locality condition. As an example we consider a particular modification, the ‘‘MF-locality condition.’’
The theory obtained by replacing theF-locality condition with the MF-locality condition possesses a few
attractive features. One of them is that it is consistent with both locality and the existence of time machines.
@S0556-2821~98!00124-6#

PACS number~s!: 04.62.1v, 04.20.Gz
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I. INTRODUCTION

In recent years much progress has been achieved to
the development of a rigorous and meaningful quantum fi
theory in curved background~semiclassical gravity!. In par-
ticular, in the framework of the ‘‘algebraic approach’’~see
@1# and references there! for globally hyperbolic spacetimes
complete and self-consistent description was constructe
the real scalar field obeying the Klein-Gordon equation

~h2m2!f50. ~1!

However, there are nonglobally hyperbolic spacetimes@e.g.,
the Kerr black hole or spacetimes with a conical singula
~those are universes containing a cosmic string!# quantum
effects in which are of obvious interest. So it would be d
sirable to have a theory applicable to such spacetime
well. Unfortunately, global hyperbolicity plays a crucial ro
in the above mentioned theory, which therefore cannot
straightforwardly extended to the general case. The des
generalization has not been constructed so far, but a
‘‘reasonable candidates for minimal necessary condition
@1# were considered, that is, ‘‘statements@that# begin with
the phrase ‘Whatever else a quantum field theory~on a given
non-globally hyperbolic spacetime! consists of, it should a
least involve...’ ’’ @1#. The best-studied candidate for a ne
essary condition is the ‘‘F-locality condition’’ proposed by
Kay @2#. Its importance is in that it turns out to be qui
restrictive. In particular, a theorem was recently proved
Kay, Radzikowski, and Wald, which says, roughly speaki
that theF-locality condition cannot hold in a spacetime co
taining a time machine with the compactly generated Cau
horizon @1#.

The present paper is devoted to the problem of how
F-locality condition can be amended. The necessity of
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amendments @revealed by the Kay-Radzikowski-Wal
~KRW! theorem# stems from the fact that one cannotjust
forbid time machines.

It has been about six years now that a mechanism
could ‘‘protect causality’’ @3# against time machines ha
been actively sought. The driving force for this search
apparently the idea that the existence of a time mach
would defy the usual notion of free will. This would be th
case indeed if we found a paradox~like that usually called
the grandfather paradox!. Suppose we found such a syste
and its initial ~that is fixed to the past of the time machin
creation! state that the equations governing its evoluti
have no solution due to the nontrivial causal structure of
spacetime. We know that the system being prepared in
state must evolve according just to those equations~to
change them we must have confessed that we overloo
some effects, which would have implied that we simply bu
an improper model, but not found a paradox! and at the same
time we know that they have no solution. So we have
conclude that such an initial state somehow cannot be r
ized, that is, ‘‘...if there are closed timelike lines to the futu
of a given spacelike hypersurface, the set of possible in
data for classical matter on that hypersurface...@is# heavily
constrained compared@to# the same local interactions@that#
were embedded in a chronology-respecting spacetime’’@4#.
The dislike for such a contradiction with ‘‘a simple notion o
free will’’ @5# was so strong that Rama and Sen@6#, Visser
@7#, and in fact Hawking and Ellis@5# proposedto postulate
the impossibility of time machines. Also a postulate proh
iting time machines is implicitly contained~as is shown by
the KRW theorem! in Kay’s F-locality condition~from now
on by a ‘‘time machine’’ we mean exclusively a time m
chine with the compactly generated Cauchy horizon!. The
irony of the situation is that while no paradoxes have be
found so far@8#, such postulates in the absence of a mec
nism that could enforce them lead to precisely the same c
straints on one’s will. Indeed, we know that there are init
©1998 The American Physical Society10-1
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S. KRASNIKOV PHYSICAL REVIEW D 59 024010
conditions on the metric and the fields such that when t
are fixed at a spacelike surface1 the Einstein equations
coupled with the equations of motion for these fields lead
the formation of a time machine. So if a postulate forb
time machines we only can conclude either that~i! there are
some~e.g., quantum! effects which we have overlooked an
which being taken into consideration always change
equations of motion so that the time machine does not fo
or ~ii ! such initial conditions are somehow forbidden. Bo
possibilities were considered in the literature.

~i! A popular idea was that the vacuum polarization nea
would-be Cauchy horizon~when it is compactly generated!
becomes so strong that its back reaction on the metric
vents the formation of the horizon. This idea, however, h
never been embodied in specific results. The vacuum po
ization in spacetimes with a time machine was evaluated
a few simplest cases@3,9,10#2 and it turned out that some
times it diverges on the Cauchy horizon and sometime
does not~in the perfect analogy with, say, the Minkows
space!. So it is unlikely that this effect could always prote
causality.

~ii ! It is possible that initial data leading to the formatio
of a time machine are forbidden not by a restriction on o
will but simply by the fact that they require some unreal
able conditions. It was shown@3#, for example, that to creat
a time machine of a noncosmological nature~that is evolving
from a noncompact Cauchy surface! one has to violate the
weak energy condition~WEC! and a number of restriction
was found on such violations~see, e.g.,@11#!. None of them,
however, has been able to rule time machines out. Moreo
recently a classical scenario for WEC violations was p
posed@12#.

Thus causality remains unprotected and any postulate
hibiting time machines without adducing a mechanism t
enforces this prohibition raises the alternative of reject
either the postulate or the idea that whether one can perf
an experiment does not depend on whether causality
holds somewhere in the future.

In the case of theF-locality condition the alternatives a
first glance seem equally unattractive since this conditio
based on theGH-equivalence principle~see Sec. III!. How-
ever, a closer inspection shows that theF-locality condition
contains a strong arbitrary requirement~in Sec. IV we dis-
cuss this fundamental point in great detail!. So one can rec-
oncile the GH-equivalence principle with quantum fiel
theory in spacetimes with a time machine by just abandon
this requirement. In doing so one still can use the G
equivalence principle in the theory. It is only necessary
find its another mathematical implementation. As an

1Actually, even on a part of the surfacet50 of an ‘‘almost
Minkowskian’’ space~cf. @3#!.

2There are also papers where~for nonsimply connected time ma
chines! different results based on the ‘‘method of images’’ are o
tained and discussed. This method, however, involves manip
tions with incurably ill-defined entities and generally allows one
obtain almost any result one wants~see@10# for a detailed discus-
sion!.
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ample we consider in Sec. V the ‘‘MF-locality condition.’’
An important point is that while expressing theGH-
equivalence principle~and seemingly doing it more ad
equately than theF-locality condition!, it does not forbid
time machines. From this we conclude in particular that, co
trary to what was claimed in@1# and in a number of succeed
ing papers, the KRW theorem does not ‘‘provide strong e
dence in support of Hawking’s chronology protectio
conjecture.’’ It rather rules out theF-locality condition.

II. GEOMETRICAL PRELIMINARIES

An important role in our discussion will be played by th
notion of global hyperbolicity. Globally hyperbolic ~GH!
spacetimes most adequately meet the concept of a ‘‘go
or ‘‘usual’’ spacetime~the Minkowski spacetime, for ex
ample, isGH!.

Definition 1. A subsetN of a spacetime~M,g! is called
globally hyperbolic if strong causality holds inN and for any
pointsp,qPN the setJ1(p)ùJ2(q) is compact and lies in
N.

Whether or not a neighborhoodN,M is GH is not deter-
mined exclusively by its geometry. Due to the requireme
that @J1(p)ùJ2(q)#,N it may happen thatN is not GH
even though (N,guN) is GH when it is regarded as a spac
time in its own right. So to describe the geometrical prop
ties of a neighborhood proper we introduce the following3

Definition 2. We call a subsetN of a spacetime~M,g!
intrinsically globally hyperbolic if (N,guN) is a GH space-
time.

Clearly, whether a neighborhoodN is an intrinsicallyGH
neighborhood~IGHN! does not depend on the geometry
M2N ~in contrast to whether it is aGHN!. To avoid confu-
sion, note that our notion of ‘‘global hyperbolicity’’ is that o
@5# and differs from that in @1,2#. The latter corresponds to
our ‘‘intrinsic global hyperbolicity.’’ For later use let us lis
a few obvious properties of~intrinsically! globally hyper-
bolic neighborhoods@~I !GHNs#: (GH1). An intersection of
two ~I !GHNs is an ~I !GHN; GH2, any GHN is an ~I !GHN
and an~I !GHN is aGHN if and only if it is causally convex
~that is if and only if no causal curve leaving the~I !GHN
returns in it!. Thus intrinsic global hyperbolicity is a weake
condition than global hyperbolicity. In particular, we hav
the following.GH3, for any pointPPM and any its neigh-
borhoodV there exists an~I !GHN N such thatPPN,V,
while such aGHN exists if and only if strong causality hold
in P. PropertyGH2 enables us to construct a simple a
useful example of a connected~I !GH but not aGH subset of
the ~three-dimensional! Minkowski space.4

Example: A ‘‘bad’’ set. Let V be the cube $xk
P(24,4)%. Consider the stripS,V ~see Fig. 1! given by the
system

x05w/2, wP@2p,p#, rP@1,2#, ~2!

-
a- 3Connected IGH neighborhoods were calledlocally causal in
@13#.

4The existence of such a neighborhood was mentioned in@2# with
reference to Penrose.
0-2
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QUANTUM FIELD THEORY AND TIME MACHINES PHYSICAL REVIEW D 59 024010
where r,w are the polar coordinates on the plane (x1 ,x2).
There are causally connected points onS and, in particular,
there are points connected by null geodesics lying inV ~or
null related in V, in terms of @1,2#!. A simple calculation
based on the fact that

A is spacelike wheneveruA0 /Ai u,1 ~3!

shows, however, that

v1 ,v2PS, v1Þv2 , v1dv2 ⇒ w~v2!2w~v1!.w0.p.

So a causal curve can connect two points inS only if one of
them lies above the planeF[$vux0(v)50% and the other
below F. Hence~a! all causal curves connecting points ofS
intersect the planeF. Similarly, by simple though tiresom
considerations one can show that~b! there is a closed se
Q,F such thatSùQ5B and none of the causal curve
from S to S intersectsC[F2Q. @For example, we can
chooseC[$vPFur(v)P(0.08,2.2), uw(v)u,0.1%.# Con-
sider nowSas a subset of the spacetimeM 8[M2Q. Prop-
erties~a! and~b! ensure thatS is a ~closed! achronal set and
hence by Proposition 6.6.3 of@5# the interiorB of its Cauchy
domain inM 8 is a GH subset ofM 8. Thus by GH2, B is an
~I !GHN and not aGHN.

Note that we have used the fact thatM is the Minkowski
space only in stating Eq.~3!. It can be easily seen, howeve
that within any neighborhood inany spacetime coordinate
xi can be found such that~3! holds in the cube$xk
P(24,4)%. So ~being generalized to the four-dimension
case! this example proves the following proposition.

Proposition 1.For any pointp and any its neighborhood
V such a connected~I !GHN B,V of p and such a pair of
null related inV points r ,qPB exist thatr and q are not
connected by any causal curve lying inB.

III. F LOCALITY

The algebraic approach to quantum field theory~below
we cite only some basic points that have to do withF local-
ity; for details see@1# and references therein! is based on the
notion of the ‘‘field algebra,’’ which is a* algebra with
identity I generated by polynomials in ‘‘smeared fields
f( f ), wheref ranges over the spaceD(M ) of smooth real-
valued functions compactly supported onM. The smeared
fields f( f ) are just some abstract objects@informally they
can be understood asf( f )5*Mf(x) f (x)A2gd4x, where
f(x) is the ‘‘field at a point’’ operator of the~nonrigorous!
conventional quantum field theory#. A field algebra is de-

FIG. 1. Construction of a ‘‘bad’’ set.
02401
fined by the relations@for all f ,hPD(M ) and for all pairs of
real numbersa,b#

f~ f !5f~ f !* , f~a f1bh!5af~ f !1bf~h!,

f@~h2m2! f #50 ~4!

~defining a ‘‘prefield algebra’’! and a relation fixing commu-
tators@f( f ),f(h)#, which we discuss in the following sub
sections.

Given a field algebra one can proceed to build a comp
quantum theory of the free scalar field by introducing t
notion of states, postulating some properties for ‘‘physicall
realistic’’ states and prescriptions for evaluating physi
quantities~such as the renormalized expectation value of
stress-energy tensor! for these states. We will not go into thi
‘‘second level’’ @2# of the theory.

A. The globally hyperbolic case

Definition 3.Let E be a subset ofD(M )3D(M ) and letn
be a functional on pairsf,h, where f ,hPD(M ) and (f ,h)
PE. We shall calln a bidistribution onE if it is separately
linear and continuous~with respect to topology ofD(M )# in
either variable.

To fix a commutator relation for the field algebra consid
the Klein-Gordon equation~1! given on an~I !GHN U. Let n
be its bidistributional solution, that is, a bidistribution o
D(U)3D(U) satisfying n@(h2m2) f ,h#5n@ f ,(h

2m2)h#50 for all f ,hPD(U). Among all such solutions
there is a preferred one.

Definition 4. Let nU
A(R) be the fundamental solutions o

the inhomogeneous Klein-Gordon equation on a neighb
hoodU satisfying the property

nU
A~R!~ f ,g!50 whenever suppf ùJ7~suppg,U !5B.

~5!

Then we call a bidistributional solution of thehomogeneous
Klein-Gordon equationnU[nU

A2nU
R the advanced minus

retarded solution onU.

It turns out that for any~I !GHN U, nU exists and is unique
So we complete the definition of a field algebra by adding
Eq. ~4! the commutator relation

@f~ f !,f~h!#5 i nM~ f ,h!I . ~6!

Which of the bidistributional solutions of Eq.~1! is the ad-
vanced minus retarded solution for a given regionU is com-
pletely determined by the causal structure ofU. This allows
one to prove the following important facts@2#.

The F-locality property (form I).Every pointp in a GH
spacetimeM has an intrinsically globally hyperbolic neigh
borhoodUp such that for allf ,hPD(Up), relation~6! holds
with nM replaced bynUp

.

We can also reformulate theF-locality property in a slightly
different form by ‘‘gluing’’ all thesenUp

into a single bid-

istribution nF.
0-3
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S. KRASNIKOV PHYSICAL REVIEW D 59 024010
Let n be a bidistribution onE.D(U)3D(U). It induces
a bidistributionnuU onD(U)3D(U) by the rule

; f ,hPD~U !, nuU~ f ,h![n~ f ,h!.

Definition 5. We shall callU and n matchingif U is a
connected~I !GHN and

nuU5nU .

The F-locality property (form II).There are such an ope
covering of aGH spacetimeM by ~I !GHNs$Ua% and such a
bidistribution nF on EU that for Pr1, nF matches anyUa
and for Pr2, when (f ,h)PEU , relation ~6! holds with nM
replaced bynF.

Here and subsequently if$Ua% is a set of neighborhoods i
M we write EU for øa@D(Ua)3D(Ua)#.

B. The nonglobally hyperbolic case

To build a field algebra in a nonglobally hyperbol
spacetime we can start with a prefield algebra~4!. Then,
however, we meet a problem with the commutator relat
sincenM is ~uniquely! defined only forGH spacetimes and
there are no obviously preferred solutions of Eq.~1! any
longer. So we need some new postulate and Kay propo
@2# to infer such a postulate from the equivalence princip
which as applied to our situation he formulated as follow

The GH-equivalence principle.On an arbitrary spacetime
the laws in the small should coincide with the ‘‘usual law
for quantum field theory on globally hyperbolic spac
times.’’

From this principle hepostulated in a sufficiently small
neighborhood of a point in an arbitrary spacetime what ho
by itself in a GH spacetime. Namely, he requires the follo
ing.

The F-locality condition (form I).Every point p in M
should have an intrinsically globally hyperbolic neighbo
hood Up such that, for allf ,hPD(Up), relation ~6! holds
with nM replaced bynUp

.

It is meant that a spacetime for which there is no field al
bra satisfying this condition~a ‘‘non-F-quantum compat-
ible’’ spacetime! cannot arise as an approximate descript
of a state of quantum gravity and must thus be considere
unphysical.

To reveal the logical structure of theF-locality condition
we reformulate it analogously to theF-locality property.

The F-locality condition (form II).There should be such
an open covering of a space-timeM by ~I !GHNs$Ua% and a
bidistributionnF onEU that forCON1, nF matches anyUa
and forCON2, when (f ,h)PEU , relation~6! holds withnM
replaced bynF.

An important difference between these two parts of
F-locality condition is thatCON2 just specifies what algebr
we take to be the field algebra, whileCON1 is a nontrivial
requirement placed from the outset upon the spacetime.
significant that the proof of the KRW theorem rests up
CON1.
02401
n

ed
,

s
-

-

n
as

e

is

The F-locality condition clearly does not fixall commu-
tators. The value of@f( f ),f(h)# remains undefined forf,h,
whose supports do not belong to a commonUa . It is more
important, however, to find out whether this uncertainty e
tends to arbitrarily small regions. Indeed, to find such lo
quantities aŝTmn&(p) or, say,^f2&(p), it would be enough
to know all commutators@f( f ),f(h)# with functions f,h
both supported in a small neighborhoodV of p. This leads us
to the following question: Is it true for at leastsomeopen
covering$Va% that

;~ f ,h!PEV , n8F~ f ,h!5nF~ f ,h! ~7!

whenever bothnF and n8F satisfy CON1 ~with possibly
different $Ua%!? It turns out that the answer is negative ev
in the simplest case. Indeed, ifM is the Minkowski space and
nF is a solution of Eq.~1! satisfying CON1, then so isn8F:

n8F~ f ,g![nF~ f 8,g! where f 8~xm![ f ~xm!1 f ~xm1am!

and byam we denote an arbitrary constant spacelike vec
field. Clearly, for any$Va% we can find anam such that Eq.
~7! breaks down. So theF-locality condition was proposed
only as anecessarycondition that is to be supplemented wi
conditions of the second level to obtain a complete theor

IV. THE PARADOX AND ITS RESOLUTION

The F-locality condition ~or CON1 to be more specific!
includes actually a postulate forbidding time machines. T
follows from the Kay-Radzikowski-Wald theorem.

The KRW theorem.If a spacetime has a time machin
with the compactly generated Cauchy horizon, then ther
no extension toM of the usual field algebra on the initia
globally hyperbolic regionD which satisfies theF-locality
condition.

Here by ‘‘the usual field algebra’’ we mean an algebra wh
for f ,hPD(D) relation ~6! holds withnM replaced bynD
~for the proof of the theorem and the precise definition ofD
see@1#!.

As is discussed in the Introduction, postulating causa
without adducing a ‘‘protecting’’ mechanism, one comes
against a contradiction with the usual notion of free w
which can be regarded as a paradox. Such a situation~when
a paradox arises from postulating in the general case a
dition harmless in theGH case! is in no way strange or new

Example: Classical pointlike particles.Consider a system
of elastic classical balls. As long as one studies onlyGH
spacetimes one sees that the following property holds.5

The property of balls conservation.Any Cauchy surface
intersects the same number of the world lines of the ball

Going to arbitrary spacetimes, one finds that the evolution
a system of balls is no longer uniquely fixed by what fixes

5A model describing such a system can be found in@8#. A specific
mathematical meaning is assigned there to the words ‘‘a world
of a ball,’’ etc. The property then can beprovedwithin this model.
0-4
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QUANTUM FIELD THEORY AND TIME MACHINES PHYSICAL REVIEW D 59 024010
in the GH case. To overcome this problem~in the perfect
analogy with theF-locality condition! one could adopt the
following postulate6 @note that in the general case it is just
postulate that is anextraneous (global) conditionand not a
consequence of any other local principles accepted in
model#.

The condition of ball number conservation.Any partial
Cauchy surface should intersect the same number of
world lines of the balls.

Then one would find@6,8# that there are ‘‘nonclassical com
patible’’ spacetimes~e.g., the Deutsch-Politzer space! that
are spacetimes in which initial data~i.e., data at some partia
Cauchy surface! exist incompatible with the postulate of ba
number conservation. This fact constitutes an~apparent, see
@8#! paradox and so one could claim that the existence
such paradoxes suggests that time machines are prohi
@6#. On the other hand, as we discussed above, it seems
reasonable to look for contradictions which we ourselv
could introduce in the model in the process of constructi
In doing so we would interpret the nonclassical compatibi
of the Deutsch-Politzer spacetime as evidence not agains
realizability of this spacetime, but rather against the pos
late. Indeed, abandoning this postulate we resolve the p
dox ~and thus permit time machines! while causing no harm
to any known physics@8#.

The above example suggests that to avoid the difficul
connected with forbidding the time machine, which we d
cussed in the Introduction, it would be natural just to ab
don theF-locality condition. The problem, however, is th
while we can easily abandon the postulate of ball num
conservation, theF-locality condition seems to be based o
the philosophical bias resembling the equivalence princi
which is something one would not like to reject. So, in t
remainder of the section we show that theF-locality condi-
tion contains actually anarbitrary ~i.e., not implied by the
GH-equivalence principle or any other respectable phys
principle! global requirementand therefore can be rejecte
or modified without regret.

Proposition 2.For anyn and any neighborhoodV there
exists a connected~I !GHN B,V that does not matchn.

Proof. Without loss of generality~seeGH3! V may be
thought of as being an~I !GHN. So eitherV itself is the
desired neighborhood ornuV is the advanced minus retarde
solutionnV on V. In the latter case we can simply adapt t
proof of the KRW theorem@1# for our needs. Namely, letB
be the set from Proposition 1 andr,q the points appearing
there. To obtain a contradiction suppose thatB matchesn

and hence matchesnuV5nV also. This would mean, by
definition, that

~nV!uB5nB , ~8!

but nB(r ,q)50 sincer andq are not causally connected i
B, while (nV)uB is singular at the pairr,q ~see@1# for the

6Such an approach was really developed in a number of wo
~e.g., see@4,6,14#!.
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proof! since both of these points belong toV and are null
connected in it. This is a contradiction.

Thus we see that even if a spacetime is globally hyp
bolic there are two families of~I !GHNs for any its point:
causally convex~and thusGH! sets$Ga% ~let us call them
good! and those containing null related points that are intr
sically noncausally connected~we shall call thembad and
denote by$Bb%!. Both families include ‘‘arbitrarily small’’
sets ~i.e., for any neighborhoodV one can find both a
‘‘good’’ ( Ga0

) and a ‘‘bad’’ (Bb0
) subsets ofV!. Irrespec-

tive of what meaning one assigns to the term ‘‘the laws
the small,’’ it seems reasonable to assume that they are
same forBb0

and Ga0
. The more it is so as an observe

cannot determine~by geometrical means! whether a neigh-
borhood is good or bad without leaving it. We have seen t
the good sets match the commutator function, while the
ones do not. So it follows that the identity of physics in tw
sets does not imply that they both match the same bidis
bution. Correspondingly, the fact that the laws in a sm
region coincide with any other laws does not imply that it~or
any its subset! matches the commutator function on a bigg
region. Sothe requirement CON1 that a point should have a
neighborhood matching a global commutator function is n
an expression of the GH-equivalence principle, but is rather
an extraneous condition. It is also an essentiallyglobal con-
dition. Indeed, for any point onealwayscan find a bidistri-
bution matchingsome~I !GHN of the point and so the main
idea ofCON1 is that such a bidistribution should exist glo
bally. We see thus that indeed theF-locality condition needs
amendments since while leading to possible paradoxe
contains a strong nonjustified requirement.

V. MODIFIED F LOCALITY

In this section we formulate and discuss a candidate n
essary condition alternative to theF-locality condition. Be-
ing an implementation of theGH-equivalence principle
~coupled with the locality principle; see below!, it neverthe-
less does not forbid any causal structure whatsoever. Th
theory based on this condition is free from the parado
discussed above, which provides further evidence in favo
the idea that the existence of time machines is inconsis
not with the equivalence principle, but only with its inad
equate implementation.

Consider a commutator@f(x),f(y)#. Physically this
commutator describes the process in which a particle cre
from vacuum inx annihilates iny. So when we require@as
we did in Eq.~6!# that the commutator function should van
ish for noncausally connectedx andy we just implement the
~most fundamental! idea that an event can affect only tho
events that are connected with it by causal curves or, in o
words, that particles~or information in any other form! can-
not propagate faster than light. The very same idea~called
locality, causality, or local causality depending on the form
lation and application! suggests that if the conditions ar
fixed in J1(x)ùJ2(y) ~that is, in all points where a nonta
chionic particle propagating fromx to y can find itself!, then
s

0-5
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@f(x),f(y)# is thereby also fixed. Thus, from locality
seems natural to require as a necessary condition tha
field algebra in a globally hyperbolic neighborhoodG does
not ‘‘feel’’ whether or not there is something outsideG @re-
call that for any x,yPG any point zPM2G lies off
J1(x)ùJ2(y)#. We can then construct a field algebra~at
least on a part ofM; see below! by adopting the following
modification of theF-locality condition.

The MF-locality condition.If $Ga% is the collection of all
globally hyperbolic subsets of a spacetimeM, then for all
( f ,h)PEG relation ~6! should hold withnM replaced by
nMF defined to be a bidistribution onEG matching eachGa .

~In other words, we require thatf( f ) andf(h) with f andh
supported on a commonGHN Ga should commute as i
there were no ambient spaceM2Ga at all.! This condition
obviously holds in aGH spacetime, where7 nMF5nM .

Remark.In discussing the field algebra we operate w
such ‘‘nonlocal’’ ~by their very nature! entities as commuta
tors @f(x),f(y)#, where x and y can be wide apart. No
wonder that relevant statements are also formulated in n
local terms. In particular, both theMF locality and the
F-locality conditions distinguish some classes of~I !GHNsof
a point from the others. In the former case those are
causally convex neighborhoods and in the latter case the
tinguished class is not specified, but its existence is po
lated. However, to learn whether or not a given~I !GHN
belongs to the distinguished class we have to consider ho
is embedded in the ambient space and to take into acc
properties of this space@e.g., to check whether or not a setV
is causally convex one must consider the wholeJ1(V)#. In
this connection we emphasize that theMF-locality condition
is not a nonlocal postulate~much less a postulate contradic
ing locality!. That is, it does not require that a spacetime,
a field algebra, possess any nonlocal properties. On the
trary, we found out what locality requires in a specific sit
ation ~it is the description of this situation that necessita
nonlocal terms as we argued above! and chose these require
ments as a postulate of the theory.8

TheMF-locality condition differs from theF-locality con-
dition in that~a! some IGHNsare replaced byeach GHNand
~b! a condition is imposed only on the field algebra, but n
on the geometry of the background spacetime.

Correspondingly, two important consequences take plac
~a! As we discussed in Sec. III, theF-locality condition

does not uniquely fix the commutator function. Neither do
theMF-locality condition. The situation has improved, how
ever, in that now we can fix at least the ultraviolet behav
of the commutator function in the regionG[øaGa where
strong causality holds.

7Generally,nMF is not the same asnF. This follows directly
from the nonuniqueness ofnF shown at the end of Sec. III.

8Note that the same situation takes place in the globally hyp
bolic case. The postulate~6! also may seem nonlocal since th
condition definingnM contains@see Eq.~5!# a ‘‘nonlocal’’ part
supp f ùJ7(suppg,U)5B.
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Proposition 3.For any spacetimeM with nonemptyG,
nMF exists and is unique.

Proof. Consider twoGHNs Gi and Gk . By GH1 their
intersection is also aGHN ~we can thus denote itGj ! and
points inGj are causally related if and only if they are cau
ally related inGi ~and thus also inGk!. So ~see@2#!

~nGi
!uGj

5nGj
5~nGk

!uGj
,

which means that we can definenMF by the equation

nMFuGa
[nGa

. ~9!

This guarantees thatnMF is a desired bidistribution match
ing all Ga . At the same time,any functional matching them
must satisfy Eq.~9!, which proves the uniqueness. j

~b! As we discussed above, theF-locality condition is
global in nature. EithernF does not exist onM and we must
exclude the wholeM from consideration ornF exists and
then no region is distinguished in this sense. The situa
differs greatly if we postulate theMF-locality condition in-
stead. On the one hand,anyspacetime is allowed now@since
nMF always exists~see Proposition 3!; there are no ‘‘non-
MF-compatible spaces’’# and, on the other hand, differen
parts of a spacetime now have different status. Namely, e
point pPG has a neighborhoodUp such thatnMF( f ,h) is
determined by theMF-locality condition at least forf ,h
PDUp

. So one can develop the theory as we mentioned

the beginning of Sec. III and eventually find^Tmn&(p). How-
ever, this cannot be done at this stage for a point inM
2G, where no field algebra is fixed. Thus the surface]G
separates the area of the present version of semiclas
gravity from terra incognita.9

The role of ]G is especially important in the time ma
chine theory since it is]G where the divergence of the stre
energy is expected by many authors. So it should be stre
that physically there is nothing particular in points of]G
~including the ‘‘base points’’; see@1#!. In perfect analogy
with coordinate singularities in general relativity,]G does
not correspond to any physical entity and the fact that
cannot find the energy density in a point of]G means not
that it is singular or ill-defined here but simply that we do n
know how to do this.

Remark.The MF-locality condition was proposed in thi
paper primarily to clarify the relation between causality vi
lations and theGH-equivalence principle. However, th

r- 9In this respect]G is similar to Visser’s ‘‘reliability boundary’’
@7#. The main difference is that the latter conceptually bounds
region where semiclassical gravity breaks down because of q
tum gravity corrections.
0-6
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uniqueness proved above and the simplicity of the unde
ing physical assumption suggest that perhaps it deserv
more serious consideration as a possible basis for const
ing semiclassical gravity in nonglobally hyperbolic spac
n.

n-
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times. Then it would be interesting to find out whether t
theory proposed by Yurtsever@13# ~which does not, at leas
explicitly, appeal to any locality principle! is consistent with
it.
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